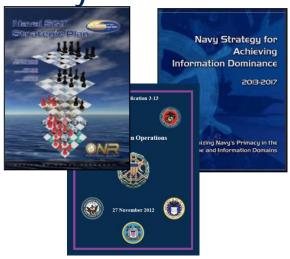


Space and Naval Warfare Systems Center Atlantic

S&T Strategic Plan

Presented to:
Small Business and Industry
Outreach Initiative (SBIOI)
Thirty-First Symposium
January 23, 2014

Presented by: **Dr. Al Emondi** CTO/7.0/D&I


Overview

- ▼ Our development approach for the SSC Atlantic S&T Strategic Plan
 - Intent for use
 - Technology Assessment
 - Contextual highlight of emerging technology areas of interest to SSC Atlantic Core Information Dominance Mission
 - Targeted technologies: (considerations)
 - Grow: (workforce, infrastructure, critical to core capability)
 - Leverage: (research partnerships, contracts, agreements, prototypes, sandbox research shaping and influence for DoD requirements)
 - Aware: (literature, conferences, site visits)
 - Snapshot of current S&T at SSC Atlantic

Development of S&T Objective Areas and Technology Environment Awareness


Policy and Guidance

S&T Needs & Gaps

Emerging Technologies

Commercial Markets & Investment Sector

Information Dominance Perspectives

 Primary focus is on <u>discovery</u> and pushing knowledge boundaries

Risk acceptance for novel development and applications

Exploration and discovery emphasis

SPAWAR S&T
Strategic Paradigm

Academia
Industry

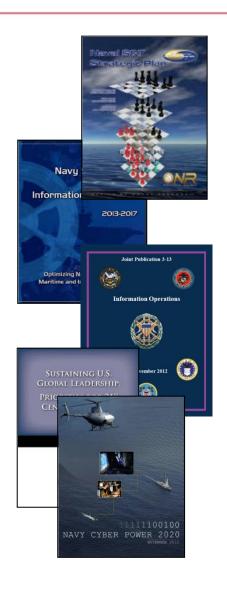
Discovery Paradigm

- Primary focus on <u>strategic outlook</u>, balancing research policy advancement, fleet support, and investment in technology development
- Governance emphasis
- Risk neutral

Profit Paradigm

- Primary focus is <u>production emphasis</u> with business case and profit motive
- Risk limited for unproven technologies and unconventional thinking
- Technology deployment solution emphasis

Information Dominance Perspective



Key Themes Emerging in Describing Information Dominance

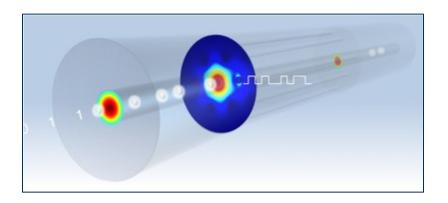
- Superior operational advantage in decision making and warfighting through the integration of technical information functions, capabilities, and resources
- Combination of three fundamental capabilities: assured command and control, battlespace awareness, and integrated fires
- Full recognition and exploitation of information as a weapon, cyberspace as a modern warfighting domain, and computer networks as a modern battlespace
- Assure access to cyberspace and confident command and control, prevent strategic surprise in cyberspace, and maintain the ability to deliver decisive cyber effects
- Develop and sustain a viable and responsive Information Dominance Corps through a commitment to workforce planning and management processes, delivery of a Corps-wide learning continuum, and cultivation of an Information Dominance culture and warrior ethos

Information Dominance Perspective

Key Themes Emerging in describing Information Dominance

- Provides the framework through which the Navy's information capabilities will be mainstreamed into the Navy's culture as a distinct warfighting discipline
- Defined as the operational advantage gained from fully integrating the Navy's information functions, capabilities and resources to optimize decision making and maximize warfighting effects (cyber warfare)
- Focused on three fundamental capabilities: (1) Assured C2, communicate with and operate forces, using a variety of methods and pathways that are flexible, resilient, and well understood, (2) Battlespace awareness, what a commander or tactical unit needs to know about a contact or target area, and the air, land and water around it.and (3) Integrated fires, fusing, in a deliberate, systematic methodology, both kinetic and non-kinetic weapons to achieve desired effects

Primary S&T Strategic Focus Areas

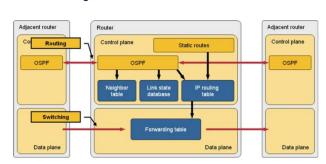

- Advanced Communications
- Networks
- ▼ Analytics & Artificial Intelligence
- ▼ Autonomous Systems
- Data Handling
- Mobility
- Computing
- Man & Machine

Advanced Communications Systems: Assessment

- Driven by the increased use of Unmanned Systems – payloads will demand improvements in weight, range, bandwidth efficiency, LPI, ECM resistance and lower latency
- Winning solutions will likely incorporate efficient spectrum usage methodologies
- Advanced communications waveform design
- New models and products will be required for the design, testing and verification of emerging communication protocols and systems

- ▼ Smart Radios will surpass current Cognitive Radio designs
- ▼ Speed increases in wireless networks will ease the integration of the radio link and wired/fiber networks
- Continued bandwidth increases as well as processing in fiber networks

Advanced Communications Systems: Targeted Technologies


Advanced Communications Systems S&T Sub Thrust Area	Follow	Leverage	Grow
Free space optical communications			
LPI Techniques			
Waveform Development			
Smart Radio: Energy aware – energy efficient design (SW/HW/FW)			
Smart Radio: Inter-network gateway support			
Smart Radio: Multiband dynamic spectrum agility			
Long haul communications techniques (other than SATCOM)			
High data rate transmission (ie. Millimeter wave, optical)			
Simulators and next generation test bed development			
EMC theory and algorithm development			
Datalink development			
Photonics			

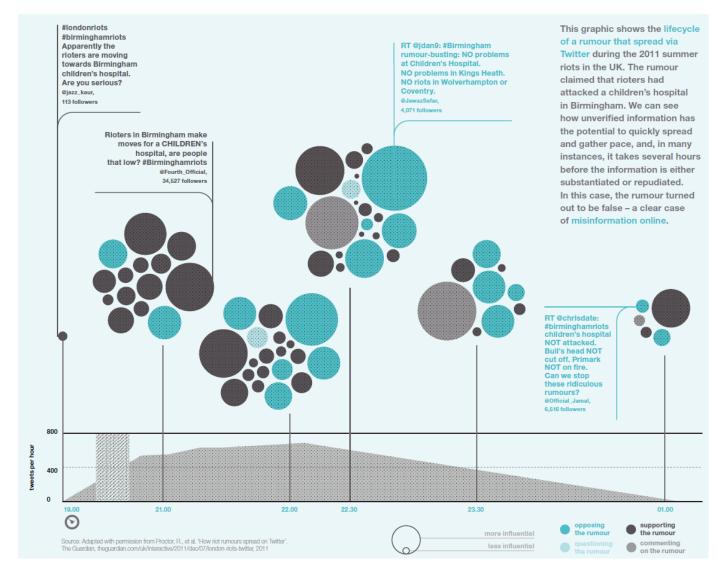
Networks: Assessment

"If you think today's internet generates a lot of data, the Internet of Everything will be another matter entirely."

- ▼ While largely academic based efforts, many of the deployment solutions for Smart Networks will be moving from research to vendor solutions in the near future
- SDN, NFV, Network Virtualization well supported and growing in the open source community – well beyond OpenFlow
- ▼ Application awareness (priority, bandwidth, context,...) will work in concert with the network control plane and intelligent network nodes
- ▼ Wireless heterogeneous networks will lead to hierarchical internetworking architectures thin line to the front line:larger infrastructure based mobile networks
- Methodologies and protocols for ensured delivery opportunistic routing vs. best path
- ▼ Wireless security improvements will be required jammer detection and defense, authentication, secure routing protocols, network security authentication
- ▼ Internet of Everything (IoE) sensor networks
- Extreme high speed wireless networks-eases fiber on/off boarding

Networks: Targeted Technologies

Networks S&T Sub Thrust Area	Follow	Leverage	Grow
High Speed Wireless Point to Point			
Efficient and Resilient Routing Algorithms			
Self organization and auto configuration			
Dynamic load distribution			
Embedded systems SW development (Mobility & Adv Comms)			
Attack Tolerance (fragmentation, dispersion, coding)			
Attack Detection			
Control Plane Management			
Network Security and Authentication			
Data priority and context awareness			
Sensor Development			


Analytics: Assessment

Predictive models and optimization algorithms allow you to not only predict the most likely outcome, but what's the best that could happen.

- ▼ The value that can be derived from big data is driving new and novel analytics innovation beyond traditional approaches
- ▼ Past inhibitors (slow computational performance, high cost HW/SW, limited data sets) have dissipated significantly
- Analytics demands new advances in Artificial Intelligence and Machine Learning
- Quickly changing interests and large data volumes quickly modify statistics and challenge earlier single machine training algorithms
- Analytic applications will provide the typical user level interface to big data analytics – Reliable, Repeatable, Relatable
- ▼ Data integrity, trust and context will be significant data characteristics that must be understood (misinformation) and utilized

Lifecycle of Misinformation - Information Vacuum Effects: 2011 London Summer Riots

Analytics: Targeted Technologies

Analytics S&T Sub Thrust Area	Follow	Leverage	Grow
Analytic functional libraries (Analytics as a service)			
Data Verification/Trust Analytics			
Linguistic Analytics			
Sentiment/Emotion Analytics			
Business Analytics			
Image Analytics			
Predictive Analytics			
Web Analytics			
Entropy and Information Theory			

Autonomous Systems: Assessment

The last fighter pilot has already been born...

- Technologies will need to be developed to counter the threat of small form factor unmanned systems
- Soft robotics will find specialized applications mimic of creatures such as octopuses, starfish and squid
- Technologies will be developed to support the development, integration and onboard pre-processing of multimodal advanced sensors
- ▼ Situational understanding "recognition of sensor data" with limited onboard preprocessing computational capability points to "Cloud on the move" and improved "Datalinks"
- Broadening the context of autonomous systems from unmanned systems to smart machines – Movers, Sages, Doers
- "My Computer, My Friend" artificial intelligence driven situational awareness and advice – automated judgment
- Combining artificial intelligence, machine learning and natural user interfaces (voice recognition) simple knowledge worker tasks will be eliminated

Autonomous Systems: Targeted Technologies

Autonomous Systems S&T Sub Thrust Area	Follow	Leverage	Grow
Sensor integration and onboard pre-processing			
Language processing			
Mission dependant collaborative behaviors			
Perception (importance, context)			
Small form factor detection			
Machine learning and deep learning algorithm development			
Automated/Assisted Decision Planning/Making			

Data Handling: Assessment

90% of all the data in the world has been generated over the last two years

- ▼ Big Data in Motion what is happening this second enabling on the fly decisions – instantaneous analytics feedback
- ▼ Real time decision making will require efficient data utilization, correlation and computational processing across the cloud
- ▼ Data explosion will grow significantly faster with machine to machine systems dwarfing the data created during the human:internet era
- Beyond data processing, new approaches will need to be developed for knowledge management
- ▼ By 2016, big data will be used more often to innovate or invent products and services than to incrementally improve existing business processes

Data Handling: Targeted Technologies

Data Handling S&T Sub Thrust Area	Follow	Leverage	Grow
In memory computing			
Novel data compression techniques			
Data forensics			
Data storage, proliferation, retrieval, and replication models			
Data security on distributed systems			
Intelligent management and distributed processing			
Efficient metadata models			

Mobility: Assessment

How to enable and empower employees by "bringing work to devices", no matter who owns the hardware or exercises administrative rights.

- ▼ Mobile application development in the "gold rush era" and no sign of slowing
- ▼ The use of presence technology will be ubiquitous in the mobile experience beyond GPS
- ▼ Bring Your Own Device(BYOD) will be passé teleworking and offsite work locations is more in-line with Bringing Work to Devices (BWTD)
- Next generation endpoint wireless security will open doors for greater acceptance
- ▼ Multi-processor type interaction (GPP, DSP, FPGA) will require new development skills for embedded systems.
- ▼ Significant impact in consumer electronics with developments in high energy density - fast charge energy storage devices

Mobility: Targeted Technologies

Mobility S&T Sub Thrust Area	Follow	Leverage	Grow
Energy generation and harvesting			
Embedded systems design and SW instantiation			
Wireless security methodologies			
Presence technology			
Alternative energy sources			
Mobile Application Development for DoD			
Many Related S&T Interest Areas Covered In Advanced Comms and Wireless Networks			

Computing: Assessment

By 2017, 10% of computers will be learning rather than processing

- Computing architectures will become virtualized and delivered as a service
- Cloud integration and hyper cloud concepts will drive standards for infrastructure programmability
- Smart machines will move us well past simply automating our business processes
- Need for speed and agility will drive computational, data and network boundaries
- ▼ Within 10 years, non-overridable "smart systems" will be used in activities risking human life.

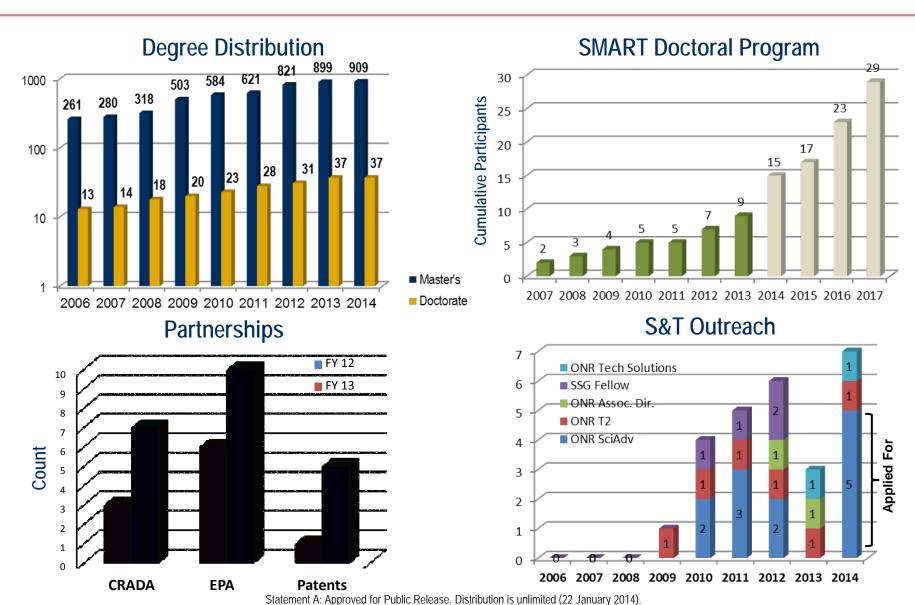
Computing: Targeted Technologies

Computing S&T Sub Thrust Area	Follow	Leverage	Grow
Trusted, secure, scalable architectures, hardware, software			
Improvement in processing efficiency and processing speeds			
Multi-core chip use-parallelization automation			
Size, weight, power use reduction			
High availability systems w/ dynamic resource management			

Man and Machine: Assessment

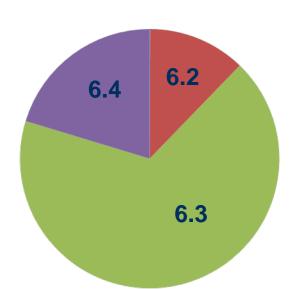
Hyper Modality Space – Beyond 3D Vision: Multi-modality and cross modality interfaces use a multitude of human senses simultaneously

- New widely accepted HMI interfaces have failed to move traditional interfaces
- Acceptance of wearable devices will need to pass the "elegance" test and satisfy unmet needs
- User arousal, alarm and other emotions will become part of the interface to the "smart machine" awareness
- Complex communication will approach the art of the possible
- Privacy concerns will continue to inhibit rich presence technologies

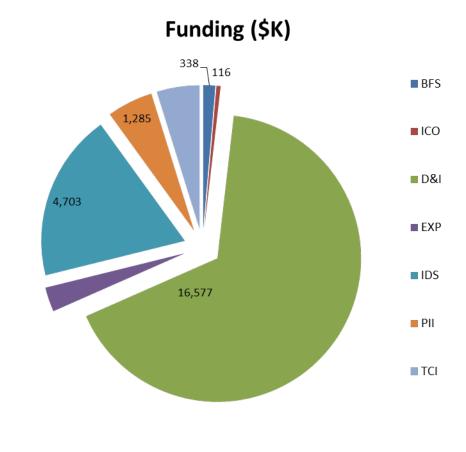


Man and Machine: Targeted Technologies

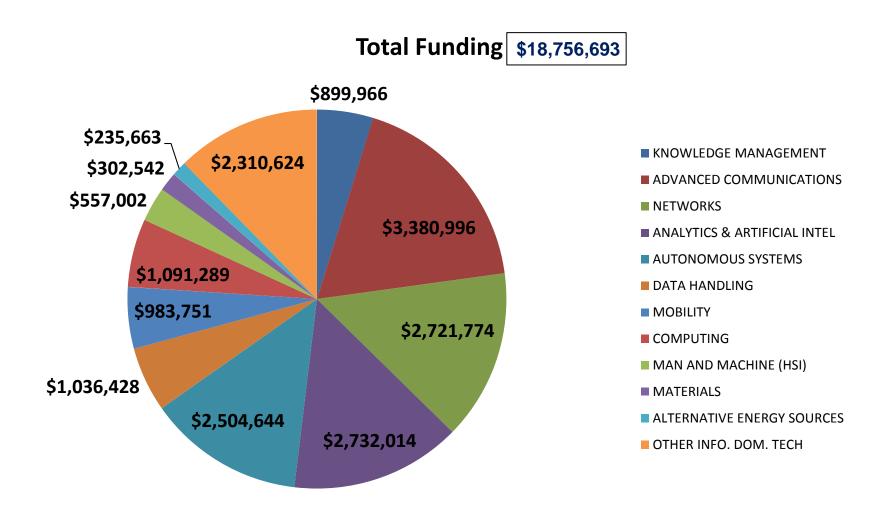
Man and Machine S&T Sub Thrust Area	Follow	Leverage	Grow
3D auditory interfaces			
Display technologies			
Gamification			
Brain:Computer Interface			
Information visualization (analytics)			
Claytronics			
Augmented reality			
Facial recognition and emotion research			



Snapshot of current S&T at SSC Atlantic: Personnel and Research Partnerships



Snapshot of current S&T at SSC Atlantic: 6.1 – 6.4 Funding Profile


BA	Amount
6.1	\$16,402
6.2	\$2,983,616
6.3	\$16,533,388
6.4	\$4,978,480

Portfolio Distribution of BA 1-4 Funding

Snapshot of current S&T at SSC Atlantic: SSC Atlantic NISE Program Totals – FY13/14

Acknowledgements

▼ SSC Atlantic Science and Technology Advisory Council

Questions?